УГАРНЫЙ ГАЗ Энциклопедия Кругосвет

Оксид — Oxide

Оксид / ɒ к с aɪ д / представляет собой химическое соединение , которое содержит по меньшей мере один кислородный атом и один другой элемент в своей химической формуле . Сам «оксид» — это дианион кислорода, атом O 2– . Металлические оксиды , таким образом , как правило , содержат анион из кислорода в степени окисления -2. Большая часть земной коры состоит из твердых оксидов, в результате окисления элементов кислородом воздуха или воды. При сжигании углеводородов образуются два основных оксида углерода : монооксид углерода и диоксид углерода . Даже материалы, которые считаются чистыми элементами, часто имеют оксидное покрытие. Например, алюминиевая фольга образует тонкий слой Al 2 O 3 (называемый пассивирующим слоем ), который защищает фольгу от дальнейшей коррозии . Отдельные элементы часто могут образовывать несколько оксидов, каждый из которых содержит разное количество элемента и кислорода. В некоторых случаях они отличаются указанием количества атомов , как и в окиси углерода и двуокиси углерода , а также в других случаях путем указания элемента окисления , как в оксиде железа (II) и оксид железа (III) . Некоторые элементы могут образовывать множество различных оксидов, например оксидов азота .

Содержание

  • 1 Формирование
  • 2 Структура
    • 2.1 Оксиды металлов
    • 2.2 Молекулярные оксиды
  • 3 Сокращение
    • 3.1 Уменьшение углеродом
    • 3.2 Восстановление при нагревании
    • 3.3 Уменьшение за счет смещения
    • 3,4 Восстановление водородом
    • 3.5 Восстановление электролизом
  • 4 Гидролиз и растворение
  • 5 Восстановительное растворение
  • 6 Номенклатура и формулы
  • 7 Примеры оксидов
  • 8 Смотрите также
  • 9 Ссылки

Формирование

Из-за своей электроотрицательности кислород образует прочные химические связи почти со всеми элементами с образованием соответствующих оксидов. Благородные металлы (такие как золото или платина ) ценятся, потому что они сопротивляются прямому химическому соединению с кислородом, а такие вещества, как оксид золота (III), должны образовываться косвенным путем.

Два независимых пути коррозии элементов — это гидролиз и окисление кислородом. Сочетание воды и кислорода еще более агрессивно. Практически все элементы горят в атмосфере кислорода или богатой кислородом среде. В присутствии воды и кислорода (или просто воздуха) некоторые элементы — натрий — быстро реагируют с образованием гидроксидов. Отчасти по этой причине щелочные и щелочноземельные металлы не встречаются в природе в их металлической, т. Е. Самородной, форме. Цезий настолько реактивен с кислородом, что он используется в качестве газопоглотителя в вакуумных трубках , а растворы калия и натрия, так называемый NaK , используются для деоксигенатации и дегидратации некоторых органических растворителей. Поверхность большинства металлов состоит из оксидов и гидроксидов в присутствии воздуха. Хорошо известным примером является алюминиевая фольга , которая покрыта тонкой пленкой оксида алюминия, которая пассивирует металл, замедляя дальнейшую коррозию . Слой оксида алюминия может быть увеличен с помощью процесса электролитического анодирования . Хотя твердые магний и алюминий медленно реагируют с кислородом в STP, они, как и большинство металлов, горят на воздухе, создавая очень высокие температуры. Мелкозернистые порошки большинства металлов могут быть взрывоопасными на воздухе. Следовательно, они часто используются в твердотопливных ракетах .

В сухом кислороде железо легко образует оксид железа (II) , но для образования гидратированных оксидов трехвалентного железа Fe 2 O 3 — x (OH) 2 x , которые в основном содержат ржавчину, обычно требуется кислород и вода. Производство свободного кислорода фотосинтетическими бактериями около 3,5 миллиардов лет назад привело к осаждению железа из раствора в океанах в виде Fe 2 O 3 в экономически важном железорудном гематите .

Структура

Оксиды имеют ряд различных структур, от отдельных молекул до полимерных и кристаллических структур. В стандартных условиях оксиды могут варьироваться от твердых веществ до газов.

Оксиды металлов

Оксиды большинства металлов имеют полимерную структуру. Оксид обычно связывает три атома металла (например, структура рутила) или шесть атомов металла (структуры карборунда или каменной соли ). Поскольку МО-связи обычно прочные, а эти соединения представляют собой сшитые полимеры , твердые вещества обычно нерастворимы в растворителях, хотя и подвергаются воздействию кислот и оснований. Формулы часто обманчиво просты. Многие из них нестехиометрические .

Молекулярные оксиды

    Некоторые важные газообразные оксиды

Двуокись углерода является основным продуктом сгорания ископаемого топлива.

Окись углерода является продуктом неполного сгорания топлива на основе углерода и предшественником многих полезных химикатов.

Двуокись азота — проблемный загрязнитель от двигателей внутреннего сгорания.

Двуокись серы , основной оксид серы, испускается вулканами.

Закись азота («веселящий газ») — мощный парниковый газ, производимый почвенными бактериями.

Хотя большинство оксидов металлов являются полимерными , некоторые оксиды являются молекулами. Примерами молекулярных оксидов являются диоксид углерода и монооксид углерода . Все простые оксиды азота являются молекулярными, например NO, N 2 O, NO 2 и N 2 O 4 . Пятиокись фосфора — более сложный молекулярный оксид с обманчивым названием, настоящая формула которого — P 4 O 10 . Некоторые полимерные оксиды деполимеризуются при нагревании с образованием молекул, например, диоксид селена и триоксид серы . Тетроксиды встречаются редко. Более общие примеры: рутений , осмий тетраоксид и тетраоксид ксенон .

Известно много оксианионов, таких как полифосфаты и полиоксометаллаты . Оксикатионы встречаются реже, некоторыми примерами являются нитрозоний (NO + ), ванадил (VO 2+ ) и уранил ( UO 2+
2 ). Конечно, известны многие соединения как с оксидами, так и с другими группами. В органической химии к ним относятся кетоны и многие родственные карбонильные соединения. Для переходных металлов известно много оксокомплексов , а также оксигалогенидов .

Сокращение

Превращение оксида металла в металл называется восстановлением. Восстановление может быть вызвано многими реагентами. Многие оксиды металлов превращаются в металлы просто при нагревании.

Уменьшение углеродом

Металлы «извлекаются» из оксидов путем химического восстановления, то есть путем добавления химического реагента. Распространенным и дешевым восстановителем является углерод в виде кокса . Самый яркий пример — выплавка железной руды . Участвует много реакций, но упрощенное уравнение обычно отображается как:

2 Fe 2 O 3 + 3 C → 4 Fe + 3 CO 2

Оксиды металлов можно восстановить с помощью органических соединений. Этот окислительно-восстановительный процесс является основой для многих важных преобразований в химии, таких как детоксикация лекарств с помощью ферментов P450 и производство этиленоксида , который превращается в антифриз. В таких системах металлический центр передает оксидный лиганд органическому соединению с последующей регенерацией оксида металла, часто кислородом воздуха.

Восстановление при нагревании

Металлы с более низкой реактивностью можно уменьшить только путем нагревания. Например, оксид серебра разлагается при 200 ° C:

Уменьшение за счет смещения

Металлы с более высокой реакционной способностью вытесняют оксид металлов с меньшей реакционной способностью. Например, цинк более активен, чем медь , поэтому он замещает оксид меди (II) с образованием оксида цинка :

Zn + CuO → ZnO + Cu

Восстановление водородом

Помимо металлов, водород также может замещать оксиды металлов с образованием оксида водорода , также известного как вода:

Восстановление электролизом

Поскольку химически активные металлы образуют стабильные оксиды, некоторые оксиды металлов необходимо подвергнуть электролизу для восстановления. Это включает в себя оксид натрия , оксид калия , оксид кальция , оксид магния и оксид алюминия . Перед погружением в них графитовых электродов оксиды необходимо расплавить:

Гидролиз и растворение

Оксиды обычно реагируют с кислотами или основаниями , иногда с обоими. Те, которые вступают в реакцию только с кислотами, называются основными оксидами. Те, которые реагируют только с помощью оснований, называются «кислыми оксидами». Оксиды, которые реагируют с обоими, являются амфотерными . Металлы, как правило, образуют основные оксиды, неметаллы — кислые оксиды, а амфотерные оксиды образуются элементами, расположенными на границе между металлами и неметаллами ( металлоидами ). Эта реакционная способность является основой многих практических процессов, таких как извлечение некоторых металлов из их руд в процессе, называемом гидрометаллургией .

Оксиды более электроположительных элементов имеют тенденцию быть основными. Их называют основными ангидридами . Под воздействием воды они могут образовывать основные гидроксиды . Например, оксид натрия является основным — при гидратации он образует гидроксид натрия . Оксиды более электроотрицательных элементов имеют тенденцию быть кислыми. Их называют «ангидридами кислот»; добавляя воду, они образуют оксокислоты . Например, гептоксид дихлора представляет собой ангидрид кислоты; хлорная кислота — это полностью гидратированная форма. Некоторые оксиды могут действовать как кислоты и основания. Они амфотерные . Пример — оксид алюминия . Некоторые оксиды не проявляют поведения как кислоты или основания.

Читайте также:  Гипофиз что это такое и за что он отвечает, функции, болезни

Ион оксида имеет формулу O 2- . Это сопр женное основание из гидроксида иона, OH — и встречается в ионных твердых веществ , таких как оксид кальция . O 2- нестабилен в водном растворе — его сродство к H + настолько велико (p K b

-38), что он отрывает протон от молекулы H 2 O растворителя :

O 2− + H 2 O → 2 ОН —

Константа равновесия вышеуказанных реакций pK eq

В 18 веке оксиды называли кальцием или кальцием в честь процесса прокаливания, использованного для производства оксидов. Позже Calx был заменен на oxyd.

Восстановительное растворение

Восстановительное растворение оксида переходного металла происходит, когда растворение сочетается с окислительно- восстановительным процессом . Например, оксиды трехвалентного железа растворяются в присутствии восстановителей, которые могут включать органические соединения. или бактерии Восстановительное растворение является неотъемлемой частью геохимических явлений, таких как цикл железа .

Восстановительное растворение не обязательно происходит на участке, где адсорбируется восстановитель. Вместо этого добавленный электрон проходит через частицу, вызывая восстановительное растворение в другом месте частицы.

Номенклатура и формулы

Иногда для обозначения оксидов используют соотношение металл-кислород. Таким образом, NbO будет называться монооксидом ниобия, а TiO 2 — диоксидом титана. Это название следует за греческими числовыми префиксами . В более ранней литературе и в настоящее время в промышленности оксиды называют добавлением суффикса -a к названию элемента. Следовательно, оксид алюминия, оксид магния и оксид хрома представляют собой соответственно Al 2 O 3 , MgO и Cr 2 O 3 .

К особым типам оксидов относятся пероксид O 2 2– и супероксид O 2 — . В таких соединениях кислород имеет более высокую степень окисления, чем оксид.

В химических формулах оксидов этих химических элементов в их самой высокой степени окисления предсказуемы и являются производными от числа валентных электронов для этого элемента. Даже химическая формула O 4 , тетракислорода , предсказуема как элемент группы 16 . Единственным исключением является медь , для которой оксидом с наивысшей степенью окисления является оксид меди (II), а не оксид меди (I) . Другим исключением является фторид , который существует не как F 2 O 7, как можно было бы ожидать, а как OF 2 .

Поскольку фтор более электроотрицателен, чем кислород, дифторид кислорода (OF 2 ) не представляет собой оксид фтора, а вместо этого представляет собой фторид кислорода.

Примеры оксидов

В следующей таблице приведены примеры обычно встречающихся оксидов. Приведено лишь несколько представителей, так как количество встречающихся на практике многоатомных ионов очень велико.

ОКИСЬ УГЛЕРОДА

ОКИСЬ УГЛЕРОДА (син. угарный газ) — соединение углерода с кислородом (CO), является токсическим веществом.

О. у.— бесцветный газ, без запаха, в обычных условиях не реагирует с водой, кислотами, щелочами. Образуется при неполном сгорании органических соединений, а также при взаимодействии углекислого газа с раскаленным углем. Горит синим пламенем при t° 700—1000°.

О. у. входит в состав промышленных газов (генераторного, доменного), к-рые получают в газогенератоpax путем неполного сжигания угля, кокса и других углеводородов. В ничтожных количествах имеется в атмосфере, вулканических и рудничных газах. Широко распространена в быту, содержится в выхлопных газах двигателей внутреннего сгорания, во взрывных газах и т.д.

Опасность интоксикации О. у. возникает при поступлении ее в воздух. Такие ситуации возможны в доменных, мартеновских, кузнечных и литейных цехах, в шахтах и рудниках после взрывных работ, на коксохимических и коксогазовых заводах, в гаражах,железнодорожных туннелях, а также на химических производствах, где О. у. является исходным материалом для получения аммиака, ацетона, метилового спирта, фосгена и др. Случаи отравлений О, у. возможны при обжиге кирпича и цемента, на хлебозаводах, при ферментации табака и на других производствах, где может иметь место неправильная топка печей (недостаточное поступление в топку воздуха или кислорода). В значительных концентрациях О. у. может накапливаться в жилых помещениях при пользовании неисправными газовыми плитами, в воздухе городских магистралей с интенсивным движением транспорта.

О. у. является продуктом обмена веществ в организме и содержится в малых количествах в крови и тканях.

Высокое сродство О. у. к двухвалентному железу гемоглобина, к-рое почти в 300 раз превосходит сродство гемоглобина к кислороду обусловливает ее токсическое действие на организм. О. у., вытесняя кислород из его соединений с гемоглобином, образует карбоксигемоглобин (HbCO). При этом часть гемоглобина становится недеятельной, что нарушает транспорт кислорода в ткани и ведет к развитию кислородной недостаточности — гипоксии (см.).

Количество образующегося HbCO пропорционально парциальному давлению О. у. и обратно пропорционально давлению кислорода во вдыхаемом воздухе. При понижении содержания О. у. во вдыхаемом воздухе начинается процесс диссоциации HbCO, к-рый в основном заканчивается через 7—9 час. после однократного воздействия О. у. Как указывают Гендерсон (Y. Henderson) и Хаггард (H. W. Haggard), существует зависимость между степенью насыщения крови HbCO и клин, симптомами интоксикации (см. таблицу).

По данным А. М. Рашевской, образование HbCO сопровождается понижением содержания кислорода в артериальной крови с 20 до 12 об.%, понижением артериально-венозной разницы до 4—2 об.% (вместо 6—7 об.% в норме), понижением содержания в крови углекислого газа с 45 до 35 об.%. Существенно снижается физиол, активность имеющегося HbO2.

При отравлении О. у. наряду с гипоксией происходит уменьшение в крови транспортной формы железа. Кроме того, О. у. при большей концентрации в крови оказывает прямое токсическое действие на клетки тканей, угнетает тканевое дыхание в коре головного мозга, оказывая ингибиторное влияние на цитохром-энзимную систему.

Гипоксия и карбоксигемоглобинемия возбуждают рефлексы с каротидных клубочков, оказывая выраженное влияние на обмен веществ и состояние эндокринно-вегетативной системы.

ПДК окиси углерода в воздухе рабочей зоны составляет 20 мг/м 3 . При работе не более 1 часа допускается превышение ПДК до 50 мг/м 3 , при работе не более 30 мин.— до 100 мг/м 3 , не более 15 мин.— до 200 мг/м 3 . Максимальная разовая ПДК в атмосферном воздухе 6 мг/м 3 , среднесуточная — 1 мг/м 3 , ПДК для жилых помещений 2 мг/м 3 .

Содержание

  • 1 Клиническая картина отравлений
  • 2 Первая помощь и лечение
  • 3 Профилактика
  • 4 Определение в воздухе
  • 5 Окись углерода в судебно-медицинском отношении
  • 6 Таблица. Зависимость между степенью насыщения крови карбоксигемоглобином (HbCO) и клиническими симптомами интоксикации окисью углерода

Клиническая картина отравлений

Острое отравление О. у. развивается чаще всего при концентрациях ее в воздухе, превышающих 100—200 мг/м 3 , а отравление с коллапсом в зависимости от индивидуального состояния организма при концентрациях 400—600 мг/м 3 через 2—5 час. При более высоких концентрациях острое отравление развивается через несколько минут. Оно характеризуется комплексом клин, симптомов со стороны ц. н. с., органов дыхания, сердечно-сосудистой системы и крови. Нарушения ц. н. с. сводятся к появлению головокружения, головной боли, возбуждению, спутанности сознания, в тяжелых случаях наступает потеря сознания и коллапс. Наиболее тяжелые отравления вызывают быстрое развитие комы, часто со смертельным исходом.

Коматозное состояние характеризуется ригидностью мышц конечностей, клоническими и тоническими судорогами, непроизвольным мочеиспусканием и дефекацией, лицо ярко-красного цвета, отмечается цианоз конечностей. При тяжелых отравлениях наблюдаются также кожно-трофические расстройства — эритема, отеки. В отдельных случаях наблюдаются расстройства зрения — нарушения светоощущения, изменение полей зрения, ксантопсия.

Расстройство дыхания выражается обычно одышкой, сменяющейся в дальнейшем урежением дыхания, обусловленным гипокапнией в результате гипервентиляции. Иногда наблюдаются случаи токсической пневмонии, возникающие на 2—3-й день после отравления в результате гипоксии легочной ткани, снижающей сопротивляемость к инфекции. Рентгенол, изменения легких: эмфизема, диффузные крупноочаговые затемнения и усиление легочного рисунка.

Характерны сердцебиение, учащение пульса, появление аритмии, расширение границ сердца, глухость тонов, явления стенокардии, в ряде случаев может развиться миокардит, инфаркт миокарда.

Читайте также:  Дисплазия шейки матки – причины, симптомы, лечение болезни

В крови наблюдается небольшое увеличение количества эритроцитов, замедление РОЭ, выраженный нейтрофильный лейкоцитоз с палочкоядерным сдвигом и лимфоэозинопе-нией.

Психические расстройства, наблюдаемые при отравлении О. у., зависят от ее концентрации. При легких отравлениях наблюдают обнубиляцию сознания (см. Оглушение) с жалобами на головные боли, головокружение, шум в ушах, тошноту и т. п. При острых отравлениях средней тяжести оглушенность постепенно нарастает до полной потери сознания, нередко возникают клонические судороги или эпилептические припадки. По выходе из бессознательного состояния преобладают то делириозные расстройства (нередко затяжные), то картины сумеречного состояния. Описаны также подострые бредовые психозы с несистематизированными идеями преследования и воздействия, кататонические картины с негативизмом и состояние хаотического возбуждения с импульсивными и агрессивными поступками (см. Кататонический синдром).

После свободного от психических нарушений «светлого» промежутка времени, продолжительностью от нескольких дней до нескольких недель может развиваться так наз. хрон, стадия психических изменений. Больные снова становятся возбужденными, затем присоединяются симптомы оглушения, а по их миновании нарастают амнестические расстройства и спутанность сознания. Иногда развиваются хрон, бредовые (шизоформные) психозы. Психические расстройства, возникающие на отдаленном этапе отравления, как бы в виде рецидива, обладают различной степенью обратимости. Развитие психической слабости (неглубокой деменции) амнестического типа наблюдается особенно в тех прогностически неблагоприятных случаях, когда психические нарушения сочетаются с развитием признаков органического поражения головного мозга (в виде паркинсонизма и ригидности , амиостатически-акинетического синдрома с амимией и хватательными автоматизмами, реже хореатических и атетозоподобных гиперкинезов, афатических, апрактических и агностических расстройств). Характерны для таких случаев и явления полиневрита (резкие боли в конечностях) с полной инверсией сна.

Возможность хрон, отравления О. у. одни исследователи оспаривают, другие считают его результатом многократных легких острых отравлений. Несомненным является развитие астенического синдрома с усилением сухожильных рефлексов, появлением тремора век, языка, пальцев рук, нарушениями функции щитовидной железы, повышением в крови количества эритроцитов и гемоглобина. Следствием хрон, интоксикации, по мнению ряда исследователей, могут быть и трофические расстройства кожи, аритмия и экстрасистолия, стенокардические явления.

Первая помощь и лечение

При отравлении О. у. следует вывести пострадавшего на свежий воздух и начать обильную ингаляцию кислорода. В тяжелых случаях проводят кровопускание с последующим внутривенным введением 20—30 мл 40% р-ра глюкозы. При нарушении дыхания вводят лобелин (1 мл 1% р-ра) или цититон (1 мл), сердечнососудистые средства. При коме — внутривенное введение метиленового синего (10 мл 1% р-ра), при остановке дыхания — искусственное дыхание, при судорогах — фенобарбитал (0,1 г), клизмы с 2% р-ром хлоралгидрата, бромиды. Рекомендуются препараты железа (ферковен).

Прогноз отравлений О. у. зависит от концентрации ее в воздухе и времени пребывания в зоне действия О. у. Прогноз острого отравления, протекающего с психическими расстройствами, серьезен. Выздоровление наступает только в половине случаев, часто разнообразные психотические картины стадии острого отравления переходят в затяжной амнестический синдром (см. Корсаковский синдром).

Профилактика

Для снижения концентрации О. у. в воздухе рабочей зоны осуществляют герметизацию оборудования, трубопроводов, быстрое удаление выделяющейся О. у. с помощью вентиляции. Необходимы постоянный контроль за концентрацией О. у. в воздухе, особенно в газоопасных местах, контроль за герметичностью оборудования и борьба с утечкой газа, в т. ч. в бытовых условиях. Важное значение в предупреждении отравлений О. у. имеет правильная организация газоспасательной службы (см.).

Для индивидуальной защиты в производственных условиях рекомендуется фильтрующий противогаз марки СО; при совместном присутствии О. у., хлора, пыли — противогаз марки СОХ. Противогаз марки М пригоден при наличии в воздухе и других газов. Противогаз марки МПС-Ф защищает от совместного действия окиси углерода и сернистого газа. При очень высоких концентрациях О. у. в воздухе используют самоспасатели (СП-9, СП-55), а также кислородные изолирующие противогазы.

Определение в воздухе

Качественное определение О. у. основано на реакции О. у. с хлоридом палладия. Для этого фильтровальные бумажки, пропитанные 1% р-ром хлорида палладия, высушиваются, затем они смачиваются 5% р-ром ацетата натрия — в присутствии О. у. в воздухе бумажки чернеют.

Окись углерода в судебно-медицинском отношении

В суд.-мед. практике приходится встречаться со случаями смертельного острого отравления О. у., в основном в результате несчастных случаев при пожаре, аварийной утечке бытового газа, нарушении правил топки печей, при работе двигателей внутреннего сгорания в гаражах. Проф. отравления и самоубийства О. у. встречаются редко.

При осмотре места происшествия особое внимание обращают на состояние газопроводки, горелок, заслонок печей, наличие тлеющих углей в топках печей, хлопьевидной копоти и посторонних запахов в помещении, где обнаружен пострадавший. При групповых отравлениях разной тяжести необходимо учитывать местонахождение каждого, т. к. люди, оказавшиеся на полу, могут в меньшей степени подвергаться токсическому действию О. у., вследствие того, что она легче воздуха. Перед началом осмотра места происшествия измеряют концентрацию О. у. в помещении, где произошло отравление. При расследовании отравлений, связанных с работой двигателей, отмечают расположение пострадавшего (кабина, кузов, гараж) и самого транспортного средства, состояние его двигателя (включен и работает; включен, но не работает из-за отсутствия горючего). При наружном осмотре трупа отмечают ярко-красные трупные пятна и хорошо выраженное трупное окоченение. Кровь жидкая, ярко-красного цвета; такого же цвета полнокровные внутренние органы и скелетные мышцы. Головной мозг и мягкая мозговая оболочка отечны. Под плеврой, брюшиной, эпикардом множественные кровоизлияния; такие же кровоизлияния обнаруживают во внутренних органах. В мозге, сердце, печени, почках — дистрофические и некротические изменения, характер и выраженность к-рых зависят от времени, прошедшего после смерти.

При подозрении на смерть от отравления О. у. проводятся предварительные пробы на HbCO. Пробы проводят на предметных стеклах или тарелках: наносят стеклянной палочкой по одной капле исследуемую и контрольную кровь; с помощью пипетки к ним добавляют по одной капле соответствующего реактива и перемешивают разными концами стеклянной палочки. Кровь, содержащая О. у., не меняет цвета; контрольная капля крови при пробе Гоппе-Зейлера (с 33% NaOH или КОН) меняет свой цвет на бурый за счет образования щелочного гематина; при пробе Либмана (с р-ром формальдегида) кровь приобретает коричнево-черную окраску за счет образования формалинового пигмента; при пробе Залесского (с конц. р-ром сернокислой меди) приобретает зеленый цвет. При пробе Сидорова к 2 мл 10% р-ра крови на дистилляте добавляют по 3—5 капель 20% р-ра желтой кровяной соли и 0,01 % р-ра бихромата калия, тщательно перемешивают. Раствор, содержащий HbCO, приобретает карминово-красную окраску, HbO2 — коричневато-зеленую. При пробе Кун-келя—Ветцеля в пробирку к нескольким миллилитрам исследуемой крови добавляют тройной объем воды и приблизительно 1/3 по объему 1—3% танина, смесь встряхивают и оставляют на нек-рое время; образовавшийся осадок имеет ярко-красный цвет (в контрольной крови осадок приобретает коричнево-красную окраску). При спектральном исследовании с помощью спектроскопов прямого видения в пробиркут вносят несколько капель крови, разводят ее водой до светло-розового цвета, наблюдают спектральную картину, затем добавляют гидросульфит натрия или другой восстановитель.

Спектр крови, содержащий HbCO, не изменится, в контроле же за счет образования восстановленной формы НЬ 2 полосы поглощения в желто-зеленой части спектра заменятся на одну широкую.

В диагностике отравления О. у. важны результаты суд.-хим. определения карбоксигемоглобина (HbCO) в крови и карбоксимиогло-бина в мышцах погибшего. Наличие О. у. в крови и мышцах устанавливается качественными реакциями, основанными на изменении физ.-хим. свойств крови под воздействием О. у., спектральным исследованием (по обнаружению спектров карбоксигемоглобина и карб-оксимиоглобина). Количественное содержание О. у. в крови и мышцах устанавливается фото- и спектрофотометрическими методами (см. Спектрофотометрия). Содержание О. у. в крови и ее количество устанавливают также газохроматографическим методом (см. Хроматография).

Во время вскрытия для суд.-хим. исследования берут 100 мл крови из полостей сердца или крупных сосудов и хранят ее до исследования под слоем вазелинового масла на холоде. При использовании современных газохроматографических методов исследования достаточно всего 1 —1,5 мл крови. Качественное установление HbCO возможно также при исследовании высушенной крови и кровяных пятен. Одновременно производится суд.-хим. исследование мышечной ткани на наличие и количественное содержание карбоксимиоглобина. Для определения карбоксимиоглобина необходимы 50—100 г скелетных мышц. Соединения О. у. с гемо- и миогло-бином стойки; их можно обнаружить в трупах через длительное время после смерти.

Читайте также:  Снижение артериального давления во время сна, контролируемое с помощью амбулаторного мониторинга, сн

При острых отравлениях содержание HbCO в крови может доходить до 50—60 и даже до 100%. Смерть обычно наступает от паралича дыхания при замещении 70— 80% гемоглобина на карбоксигемоглобин. При очень высоких концентрациях О. у. в окружающей среде наблюдается «моментальная» форма отравления, заканчивающаяся быстрой смертью, иногда после нескольких вдохов. Значительное снижение количества HbCO в крови отмечается при ее нагревании, поэтому не исключено обнаружение небольших количеств HbCO в крови трупов, подвергшихся действию высокой температуры во время пожара. Иногда отрицательный результат хим. исследования при заведомом отравлении О. у. связан с быстрым наступлением смерти или же с быстрым удалением пострадавшего из атмосферы, содержащей повышенные концентрации О. у.

Таблица. Зависимость между степенью насыщения крови карбоксигемоглобином (HbCO) и клиническими симптомами интоксикации окисью углерода

Содержание HbCO в крови (%)

Клинические симптомы интоксикации окисью углерода

УГАРНЫЙ ГАЗ

ОКСИД УГЛЕРОДА (УГАРНЫЙ ГАЗ). Углерода(II) оксид (угарный газ) СО, несолеообразующий оксид углерода. Это означает, что не существует кислоты, соответствующей этому оксиду. Оксид углерода(II) – газ без цвета и запаха, сжижающийся при атмосферном давлении при температуре –191,5о С и затвердевающий при –205о С. Молекула СО по своему строению аналогична молекуле N2: обе содержит равное число электронов (такие молекулы называются изоэлектронными), атомы в них соединены тройной связью (две связи в молекуле СО образованы за счет 2р-электронов атомов углерода и кислорода, а третья – по донорно-акцепторному механизму с участием неподеленной электронной пары кислорода и свободной 2р-орбитали углерода). В результате физические свойства СО и N2 (температуры плавления и кипения, растворимость в воде и т.д.) очень близки.

Оксид углерода(II) образуется при сгорании углеродсодержащих соединений при недостаточном доступе кислорода, а также при соприкосновении раскаленного угля с продуктом полного сгорания – углекислым газом: С + СО2 → 2СО. В лаборатории СО получают дегидратацией муравьиной кислоты действием концентрированной серной кислоты на жидкую муравьиную кислоту при нагревании, либо пропусканием паров муравьиной кислоты над Р2О5: НСООН → СО + Н2О. Получают СО и разложением щавелевой кислоты: Н2С2О4 → СО + СО2 + Н2О. От других газов СО легко отделить пропусканием через раствор щелочи.
При обычных условиях СО, как и азот, химически довольно инертен. Лишь при повышенных температурах проявляется склонность СО к реакциям окисления, присоединения и восстановления. Так, при повышенных температурах он реагирует со щелочами: CO + NaOH → HCOONa, CO + Ca(OH)2 → CaCO3 + H2. Эти реакции используются для удаления СО из технических газов.

Оксид углерода(II) – высококалорийное топливо: горение сопровождается выделением значительного количества теплоты (283 кДж на 1 моль СО). Смеси СО с воздухом взрываются при его содержании от 12 до 74%; к счастью, на практике такие смеси встречаются исключительно редко. В промышленности для получения СО проводят газификацию твердого топлива. Например, продувание водяного пара через слой раскаленного до 1000o С угля приводит к образованию водяного газа: С + Н2О → СО + Н2, обладающего очень высокой теплотворной способностью. Однако сжигание – далеко не самое выгодное использование водяного газа. Из него, например, можно получить (в присутствии различных катализаторов под давлением) смесь твердых, жидких и газообразных углеводородов – ценное сырье для химической промышленности (Реакция Фишера – Тропша). Из той же смеси, обогатив ее водородом и применив нужные катализаторы, можно получить спирты, альдегиды, кислоты. Особое значение имеет синтез метанола: СО + 2Н2 → СН3ОН – важнейшего сырья для органического синтеза, поэтому эту реакцию проводят в промышленности в больших масштабах.

Реакции, в которых СО является восстановителем, можно продемонстрировать на примере восстановления железа из руды в ходе доменного процесса: Fe3O4 + 4CO → 3Fe + 4CO2. Восстановление оксидов металлов оксидом углерода(II) имеет большое значение в металлургических процессах.

Для молекул СО характерны реакции присоединения к переходным металлам и их соединениям с образованием комплексных соединений – карбонилов. Примерами могут служить жидкие или твердые карбонилы металлов Fe(CO)4, Fe(CO)5, Fe2(CO)9, Ni(CO)4, Cr(CO)6 и др. Это очень ядовитые вещества, при нагревании вновь распадающиеся на металл и СО. Так можно получить порошкообразные металлы высокой чистоты. Иногда на конфорке газовой плиты видны «подтеки» металла, это – следствие образования и распада карбонила железа. В настоящее время синтезированы тысячи разнообразных карбонилов металлов, содержащих, помимо СО, неорганические и органические лиганды, например, PtCl2(CO), K3[W(CO)6(OH)3], Cr(C6H5Cl)(CO)3.

Для СО характерна также реакция соединения с хлором, которая на свету идет уже при комнатной температуре с образованием исключительно ядовитого фосгена: CO + Cl2 → COCl2. Реакция эта цепная, она идет по радикальному механизму с участием атомов хлора и свободных радикалов COCl. Несмотря на ядовитость, фосген широко применяется для синтеза многих органических соединений.

Оксид углерода(II) – сильный яд, так как образует с металлсодержащими биологически активными молекулами прочные комплексы; при этом нарушается тканевое дыхание. Особенно страдают клетки центральной нервной системы. Связывание СО с атомами Fe(II) в гемоглобине крови препятствует образованию оксигемоглоблина, который и переносит кислород из легких к тканям. Уже при содержании в воздухе 0,1% СО этот газ вытесняет из оксигемоглобина половину кислорода. В присутствии СО может наступить смерть от удушья даже при наличии большого количества кислорода. Поэтому СО получил название угарного газа. У «угоревшего» человека в первую очередь страдают головной мозг и нервная система. Для спасения необходим прежде всего чистый воздух, не содержащий СО (а еще лучше – чистый кислород), при этом связанный с гемоглобином СО постепенно замещается молекулами О2 и удушье проходит. Предельно допустимая среднесуточная концентрация СО в атмосферном воздухе составляет 3 мг/м3 (около 3.10–5%), в воздухе рабочей зоны – 20 мг/м3.

Обычно в атмосфере содержание СО не превышает 10–5%. Этот газ попадает в воздух в составе вулканических и болотных газов, с выделениями планктона и других микроорганизмов. Так, из поверхностных слоев океана в атмосферу ежегодно выделяется 220 млн тонн СО. Высока концентрация СО в угольных шахтах. Много угарного газа образуется при лесных пожарах. Выплавка каждого миллиона тонн стали сопровождается образованием 300 – 400 т СО. В сумме техногенное выделение СО в воздух достигает 600 млн тонн в год, из них более половины приходится на автотранспорт. При неотрегулированном карбюраторе в выхлопных газах может содержаться до 12% СО! Поэтому в большинстве стран введены жесткие нормы на содержание СО в выхлопе автомобилей.

Образование СО всегда происходит при сгорании углеродсодержащих соединений, в том числе древесины, при недостаточном доступе кислорода, а также при соприкосновении раскаленного угля с углекислым газом: С + СО2 → 2СО. Такие процессы происходят и деревенских печах. Поэтому преждевременное закрывание дымохода печи для сохранения тепла часто приводит к отравлению угарным газом. Не следует думать что горожане, которые не топят печи, застрахованы от отравления СО; им, например, легко отравиться в плохо проветриваемом гараже, где стоит автомобиль с работающим мотором. Содержится СО и в продуктах сгорания природного газа на кухне. Многие авиационные катастрофы в прошлом произошли из-за износа двигателей или плохой их регулировки: в кабину пилотов проникал СО и отравлял экипаж. Опасность усугубляется тем, что СО невозможно обнаружить по запаху; в этом отношении угарный газ опаснее хлора!

Оксид углерода(II) практически не сорбируется активным углем и потому обычный противогаз не спасает от этого газа; для его поглощения необходим дополнительный гопкалитовый патрон, содержащий катализатор, который «дожигает» СО до СО2 с помощью кислорода воздуха. Катализаторами дожигания снабжается сейчас все больше легковых автомобилей, несмотря на высокую стоимость этих катализаторов на основе платиновых металлов.

Ссылка на основную публикацию
У всех гастрит» Что делать, если болит желудок — Wonderzine
Здоровье«У всех гастрит»: Что делать, если болит желудок Совсем необязательно есть протёртую пищу и «глотать кишку» 1 февраля 2018 203922...
Тромбоциты человека — Новости УСК
Тромбоциты человека Тромбоциты человека — бесцветные дискообразные безъядерные клетки крови, которые играют главную роль в свертывании крови (образовании тромбов и...
Трофическая язва — причины, симптомы, диагностика, лечение и профилактика
Болячка на носу не проходит 5 месяцев Ребята проблема такая(Был прыщ прям на кончике носа начал его выдавливать в душе...
У грудничка запор что делать, как помочь, если новорожденный на грудном вскармливании (свечи, слабит
Что делать когда у ребенка грудного запор Запор у грудничка – нередкое явление. После рождения органы и системы новорожденного претерпевают...
Adblock detector