Электрофорез и хроматография — Методы исследования в клинической биохимии

Электрофорез и хроматография

В процессе проведения биохимического анализа при клинико-лабораторных исследованиях часто возникает необходимость предварительного выделения анализируемых веществ, отделения их от других компонентов, находящихся в исследуемом биологическом материале. Для этих целей чаще всего используются такие физико-химические методы, как электрофорез и хроматография.

Электрофорез. Под электрофорезом понимают процесс разделения заряженных частиц в электрическом поле. Многие биологически важные молекулы (белки, аминокислоты, нуклеиновые кислоты и др.) имеют в своем составе ионизирующие группы. Поэтому в биологических жидкостях (крови, лимфе и др.) они существуют в виде катионов и анионов. Помимо этого молекулы имеющие примерно одинаковый заряд могут отличаться молекулярными массами и отношением заряда к массе. На этих различиях и основано разделение ионов при движении их в растворе под действием электрического поля.

Скорость перемещения зависит от величины заряда, а также в ряде случаев, от размера и формы молекул. Так как в большинстве случаев молекулы отличаются по своим физическим и химическим свойствам то очень немногие из них имеют одинаковую электрофоретическую подвижность. Скорость движения частиц (см/с) при напряженности электрического поля 1 В/см называется электрофоретической подвижностью.

В зависимости от способа проведения электрофореза его делят на свободный или фронтальный, когда электрофоретическое разделение осуществляется в водной фазе и зональный, т.е. электрофорез на поддерживающей среде, когда разделение осуществляется на каком-либо инертном носителе (бумага, асбестовые пластины, целлюлоза, агаровый, крахмальный и полиакриламидный гели и др.).

Суть зонального электрофореза заключается в том, что раствор смеси веществ подлежащих разделению вводят на определенный участок носителя, пропитанного электролитом. Биологический материал, подлежащий электрофоретическому разделению, растворяют или суспензируют в буфере, чтобы обеспечить проведение электрического тока, этим же буфером насыщают и носитель. В растворе между электродами ток обусловлен ионами буфера и образца, в остальной части цепи — электронами. После снятия электрического поля ионы исследуемой смеси распределятся в соответствии с их электрофоретической подвижностью.

В клинико-лабораторных исследованиях чаще используется зональный электрофорез на агаре или полиакриламидном геле. При наложении электрического поля частицы подлежащей разделению смеси придут в состояние направленного движения (будут двигаться к противоположно заряженному полюсу) и распределятся на носителе в виде отчетливых зон, которые легко обнаружить соответствующим аналитическим методом.

Важными характеристиками процесса зонального электрофореза являются градиент потенциала (В/см) и сила тока, приходящаяся на 1 см поперечного сечения полосы (плотность тока — мА/см).

Под градиентом потенциала понимают падение напряжения на 1 см носителя расположенного между электродами. В зависимости от градиента потенциала различают низковольтный электрофорез (5-15 В/см) и высоковольтный (более 50 В/см). Низковольтный электрофорез используется для разделения высокомолекулярных соединений типа белков, липопротеинов, гликопротеинов и др. Высоковольтный электрофорез используется для разделения низкомолекулярных веществ, типа аминокислот, их производных и др. Так как различие в заряде и молекулярной массе у таких веществ невелико, то нужен большой градиент потенциала, чтобы произошло эффективное разделение частиц. Так как при этом происходит значительное разогревание носителя, требуются специальные устройства для его охлаждения.

В зависимости от целей исследования электрофорез делят на аналитический и препаративный. В клинико-биохимических исследованиях используют обычно аналитический электрофорез, который позволяет работать с очень небольшими количествами исследуемого вещества и вести их количественное определение. В тех случаях, когда требуется получить большое количество изучаемого вещества, необходимого для дальнейших исследований используют препаративный вариант электрофореза.

В настоящее время для анализа биологических смесей все шире используется капиллярный электрофорез, при котором электрофоретическое разделение проводится в тонких капиллярах диаметром 25-200 мкм и длинной 10-100 см, заполненных буферным раствором. Под действием электрического поля (электрофорез проводится при напряжении 10000-30000 В) в капилляре создается электроосмотический поток, направленный к отрицательному полюсу, вместе с которым перемешаются и компоненты подлежащие разделению. В зависимости от заряда и массы скорость их движения будет различной, что приводит к фракционированию смеси. В концевой точке капилляра разделенные компоненты количественно определяют, используя различные оптические детекторы Близким к электрофорезу является метод изоэлектрического фокусирования, когда разделение белков и некоторых других анализируемых веществ идет в зависимости от величины их изоэлектрических точек.

Изоэлектрической точкой называют такое состояние белковой молекулы, при котором ее суммарный заряд равен нулю. В методе изоэлектрического фокусирования вначале между электродами устанавливают градиент рН с помощью веществ особой химической природы, получивших название амфолитов-носителей. Заряженные молекулы белков в ходе опыта будут двигаться в направлении противоположно заряженного электрода в соответствии с их действительным зарядом. Так как молекулы белков амфотерны, то при перемещении в градиенте рН их суммарный заряд будет меняться до тех пор, пока он не станет равным 0. Это произойдет в том месте, где величина рН будет равна изоэлектрической точке. Поэтому молекулы с одинаковой изоэлектрической точкой сконцентрируются в одной узкой зоне.

Читайте также:  Алпразолам (Alprazolamum)- описание вещества, инструкция, применение, противопоказания и формула

Хроматография. Это метод разделения и анализа многокомпонентных систем, основанный на использовании явлений сорбции и десорбции в динамических условиях. В процессе хроматографии происходит многократное повторение актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Вещество подвижной фазы непрерывно вступает в контакт с новым участком сорбента и частью сорбируется, а сорбированное вещество контактирует со свежими порциями подвижной фазы и частично десорбируется.

Методы хроматографического анализа различаются: по агрегатному состоянию системы, в которой проводится разделение на газовую и жидкостную: по механизму разделения — на адсорбционную, распределительную, ионообменную, гель-хроматографию, аффинную и др. В ряде случаев разделение оказывается результатом нескольких одновременно протекающих процессов с различными механизмами. Это приводит к образованию хроматограммы смешанного типа, но один из процессов всегда является доминирующим (рис. 9 и 10, см. стр. 20-21).

В газовой хроматографии подвижной фазой является газ. В зависимости от состояния неподвижной фазы газовая хроматография подразделяется на газо-адсорбционную, когда неподвижной фазой является твердый адсорбент и газо-жидкостную, когда неподвижной фазой является жидкость, или точнее пленка жидкости на поверхности частиц твердого адсорбента.

Жидкостная хроматография основана на адсорбции твердым веществом, играющим роль неподвижной фазы, определяемых компонентов, находящихся в растворенном состоянии.

В основе адсорбционной хроматографии лежит различная сорбируемость разделяемых веществ на твердом сорбенте в соответствии с их сродством к адсорбенту. При этом сорбируемость растворителя должна быть незначительной по сравнению с таковой анализируемой смеси. Процесс адсорбции зависит от свойства адсорбента, адсорбируемых соединений, растворителя. В зависимости от этих свойств вещества, подлежащие хроматографическому разделению, образуют адсорбционный ряд выражающий относительное адсорбционное сродство его членов к адсорбенту. Образующееся в колонке адсорбента зональное распределение веществ соответствует их положению в адсорбционном ряду. В качестве адсорбентов в адсорбционно-жидкостной хроматографии применяются органические и неорганические вещества: сахароза, крахмал, оксид алюминия, силикагель, активированный уголь и др.

Ионообменная хроматография основана на способности некоторых твердых веществ (ионитов) обмениваться ионами с подлежащими разделению веществами. Применяемые в ионообменной хроматографии иониты могут быть как органическими, так и неорганическими. Способность к ионному обмену определяется строением ионита, представляющего собой каркас, на котором закреплены активные группы (-СООН, -SO3H, — NH3Cl, -NH2Cl и др.). В зависимости от обмена катионов или анионов иониты делят на катиониты, аниониты и амфолиты. На принципах ионообменной хроматографии основано разделение аминокислот в аминокислотных анализаторах.

Распределительная хроматография основана на распределении компонентов разделяемой смеси между несмешивающимися фазами. Образующая неподвижную фазу жидкость находится на поверхности или в порах твердого носителя, на который наносится смесь веществ, подлежащих разделению. Затем создают ток подвижного растворителя. Чем лучше вещество растворимо в жидкости, играющей роль подвижной фазы, тем дальше оно продвинется по направлению тока растворителя. Вещества, плохо растворимые в подвижной фазе, расположатся ближе к точке нанесения. В зависимости от техники выполнения распределительная хроматография выполняется как колоночная, бумажная или тонкослойная. Методика распределительной хроматографии в колонках аналогична адсорбционной или ионообменной: вначале в колонку с носителем и закрепленным на нем неподвижной фазой вводят небольшой объем раствора смеси компонентов и затем промывают колонку подвижным растворителем.

При бумажной хроматографии разделение проводят на полосах бумаги, где роль неподвижной фазы играет вода, удерживаемая гидрофильными целлюлозными волокнами бумаги, а подвижной фазой является какой-либо органический растворитель. В каждый момент имеет место определенное перераспределение разделяемых компонентов между слоем органического растворителя и водой. В результате одни вещества движутся быстрее вслед за фронтом органического растворителя, другие в той или иной степени отстают, а некоторые вообще остаются на стартовой линии.

При тонкослойном варианте разделение идет в тонком слое носителя. Чаще всего для этих целей используются пластинки из силикагеля (например, Silufol) широко используемые для фракционирования липидов, аминокислот и других биосубстратов.

Гель-хроматография основана на различии в размерах и молекулярных массах белков и других макромолекул, являющихся важнейшей характеристикой молекулы. В качестве материала-носителя в гель- хроматографии используется сшитый декстран (сефадекс), сшитый полиакриламид (биогель Р) и агароза. Они получили широкое распространение как в аналитической, так и в препаративной лабораторной работе, а также в производстве, в химической и биологической промышленности.

Колонка с сефадексом действует по принципу «молекулярного сита». Молекулы большие, чем самые крупные поры разбухшего сефадекса не могут проникать в гранулы и сравнительно быстро проходят в жидкой фазе вне частиц геля, поэтому элюируются первыми. В настоящее время имеется большое число сефадексов, позволяющих разделить белки и полипептиды в диапазоне молекулярных масс от 700 до 800000 Да.

Читайте также:  Аскорутин инструкция по применению показания, противопоказания, побочное действие – описание Ascorut

Были разработаны также хроматографические материалы для разделения белков, путем связывания некоторых ионообменных групп с сефадексами. Полученные производные-ДЭАЭ-сефадекс, КМ-сефадекс и другие широко используются при хроматографии.

Аффинная хроматография или (биоспецифическая по сродству хроматография), основана на принципе специфического взаимодействия с особыми веществами (лигандами), закрепленными на носителе. Биологические макромолекулы обладают способностью обратимо связывать многие вещества. Например, ферменты образуют комплексы с субстратами, антитела взаимодействуют с антигенами, мРНК с комплементарной ДНК и т. д. Все эти взаимодействия строго специфичны. Образование специфических комплексов биологических макромолекул, способных в определенных условиях к диссоциации лежит в основе метода разделения получившего название аффинной хроматографии. Если закрепить один из компонентов этого комплекса на матрице, иммобилизовать его, то получится специфический сорбент для второго компонента (аффинат). Нерастворимые аффинаты готовят обычно путем ковалентного присоединения лиганда к нерастворимому носителю. Если смесь белков пропустить через колонку, заполненную таким аффинатом, то все молекулы, которые не обладают сродством к лиганду, закрепленному на носителе пройдут не задерживаясь, а белок имеющий сродство к аффинному лиганду будет адсорбироваться на колонке. Вымыть адсорбированный белок с колонки можно буферными смесями с измененной величиной рН, ионной силой, а также введением в состав элюента веществ, ослабляющих связи между белками и лигандами.

Одними из первых биоспецифических сорбентов, были антигены ковалентно связанные с нерастворимым носителем. Они были использованы для получения моноспецифических антител. Затем аналогичным путем были получены иммобилизованные ферменты. Стало возможным создание ферментных реакторов для получения различных веществ с использованием иммобилизованных ферментов.

Методы исследования химической организации клетки

Люминесцентная микроскопия.

Индукция с помощью ультрафиолетового света флуоресценции химических компонентов клетки (естественных или введенных извне).

Применяется для прижизненного выявления в клетке биохимических компонентов, способных к флуоресценции — витаминов, пигментов, гормонов, антибиотиков. Кроме того, с помощью синтетических флуорохромов, специфически взаимодействующих с определенными химическими компонентами клетки (ДНК, РНК, липидами и др.), исследуют их внутриклеточную локализацию.

Дифференциальное центрифугирование.

Центрифугирование смеси, полученной в результате разрушения клеток (ткани, органа), в специальных центрифугах при различных скоростях вращения ротора, что позволяет раздельно осаждать частицы с различной массой (ядра, оргаиеллы, макромолекулы). p>Применяется для получения чистых фракций различных субклеточных структур для последующего биохимического и биофизического исследований.

Электрофорез.

Движение заряженных частиц (макромолекул и др.), взвешенных в электролите, при наложении внешнего электрического поля; осуществляется в среде пористого наполнителя (хроматографическая бумага, гели); в зависимости от величины и знака заряда частиц они перемещаются к катоду или аноду и занимают совершенно определенное место (зону) (рис. 3.2).

Используется для разделения сложных смесей биополимеров — белков, нуклеиновых кислот и др.

Рентгеноструктурный анализ.

Основан на изучении дифракции, возникающей при взаимодействии рентгеновского излучения с кристаллическим образцом.

Рис. 3.2. Электрофореграмма смеси белков (каждому пятну соответствует определенная белковая фракция)

Применяется для исследования атомно-молекулярного строения биологических полимеров — пептидов, полисахаридов, нуклеиновых кислот.

5. Хроматография. Разделение смеси веществ за счет различий в их распределении в системе, состоящей из двух компонентов — подвижного (газовая или жидкая фаза) и неподвижного (твердая фаза или жидкость, связанная на инертном носителе).

Основные разновидности: жидкостная, газовая, тонкослойная хроматография.

Используется для разделения и анализа смесей веществ, а также изучения их физико-химических свойств (массы и размеров молекул и др.).

Электрофорез.

Электрофорез (от электро… и греческого рhoresis – перенесение) – направленное перемещение заряженных частиц в дисперсионной среде под действием внешнего постоянного электрического поля к противоположно заряженному электроду.

Метод позволяет разделять макромолекулы, различающиеся по таким важнейшим параметрам, как

размеры (или молярная масса),

причем эти параметры могут выступать как порознь, так и в совокупности.

Физический принцип метода заключается в следующем. Находящиеся в буферном растворе макромолекулы обладают электрическим зарядом, величина и знак которого зависят от рН среды. Если через этот раствор пропускать электрический ток, то под действием электрического поля макромолекулы в соответствии со своим зарядом мигрируют в направлении катода или анода. В зависимости от величины заряда и размеров молекулы приобретают разные скорости, и в этом — сущность процесса разделения смеси белков методом электрофореза. Постепенно исходный препарат, состоявший из различных молекул, разделяется на зоны или фракции, содержащие одинаковые молекулы.

Факторы, влияющие на электрофоретическую подвижность

Молекула белка в растворе при любом значении рН, отличающемся от изоэлектрической точки, имеет определенный заряд. Это приводит к тому, что белок движется в электрическом поле (макрокатион к катоду, макроанион к аноду). На электрофоретическую подвижность белковых молекул влияют следующие факторы:

Читайте также:  Причины низкой температуры тела у человека, что делать если температура ниже 35 или 36 Азбука здоро

Размер и форма макромолекулы.

Чем больше величина заряда белковой молекулы, тем выше ее электрофоретическая подвижность из-за увеличения силы электростатического притяжения с противоположно заряженным электродом.

Напряженность электрического поля (Н, В/м)

Характер буферного раствора

Электрофорез сыворотки крови обычно проводят при нейтральных или слабощелочных рН = 8,6, когда большинство белков мигрирует к аноду.

Чаще всего в качестве носителей используют относительно инертные вещества, но их состав все же оказывает влияние на подвижность разделяемых веществ, и, выбор носителя зависит от природы образца.

Методы электрофореза

Существует множество разновидностей и модификаций метода электрофореза, которые используются в различных областях.

Выделяют три основных типа электрофоретических систем: электрофорез с подвижной границей, зональный электрофорез и стационарный (вытесняющий) электрофорез.

Электрофорез белков подразделяется также на одномерный и двумерный, препаративный и аналитический, а также электрофорез нативных белков. В случае использования иммунологических методов для выявления разделенных белков используется иммуноэлектрофорез.

Зональный электрофорез

В случае зонального электрофореза смешивание разделенных зон может быть предотвращено. При этом методе разделение производят в закрепленной среде. Наиболее распространены методы разделения на пористых носителях.

Электрофорез на бумаге. Электрофорез проводят с использованием боратных, фосфатных или веронал-мединаловых буферных растворов. Носителем служит специальная хроматографическая бумага, которую разрезают на полоски требуемого размера. Наносят сыворотку крови на катодный конец смоченной буферным раствором полоски. В зависимости от типа прибора и условий опыта электрофорез на бумаге длится от 4 до 16 часов. Скорость движения белков пропорциональна величине их электрического заряда. За определенное время белковые фракции пройдут различный путь и разделятся.

Схема прибора для электрофореза на бумаге.

Затем белки фиксируют высушиванием и красят красителями. Окрашенные зоны белковых фракций вырезают и элюируют специальным растворителем (растворNaOH) для фотометрического определения каждой фракции. При электрофорезе на бумаге белков сыворотки крови получается до 5 фракций: альбумины, 1-, 2-, -, -глобулины.

Электрофореграмма сыворотки крови на хроматографической бумаге:

1 – альбумин, 2 – 1-глобулин, 3 – 2-глобулин, 4 – -глобулин, 5 – -глобулин.

Электрофорез на ацетатцеллюлозной мембране. Мембрана ацетатцеллюлозы как носитель для электрофореза имеет ряд преимуществ по сравнению с бумагой: однородность, строго определен­ный размер пор, пониженная адсорбционная способность, что исключает образование размытых полос позади зон. Для окрашивания зон применяют методы аналогичные методам окрашивания зон на бумаге.

Электрофорез в гелях. В этом методе в качестве опорной среды используют крахмальный, агар-агаровый, полиакриламидный гели. Характерной особенностью этой разновидности зонального электрофореза является его высокая разрешающая способность, поскольку гели функционируют как молекулярные сита: крупные молекулы проходят сквозь него тем медленнее, чем меньше размер пор в геле. Методом электрофореза в агаровом геле в сыворотке крови выявляется до 7-8 фракций, а при электрофорезе в крахмальном или полиакриламидном геле – до 20 фракций. Агаровый гель ввиду большого количества воды в нем и вследствие этого большой скорости движения ионов используется в иммуноэлектрофорезе для обнаружения антигенов. Самым перспективным является полиакриламидный гель, так как он прозрачен, обладает значительной механической прочностью, однороден по составу, химически инертен, размер пор у этого геля можно варьировать в широких пределах и его можно использовать с самыми различными буферными растворами. Скорость движения белков пропорциональна их заряду и молекулярной массе.

Фотография электрофореграмм смеси белков, разделенных в полиакриламидном геле, иллюстрирующая разделение белков по заряду и молекулярной массе.

Вариантов проведения электрофореза в полиакриламидном геле много (вертикальный в трубках и горизонтальный на пластинах).

Схема простейшего прибора для электрофореза в геле

а — до фракционирования,

б — после его окончания

Схема прибора для электрофореза в горизонтальных пластинах

1-антиконденсационная крышка;

2 – электродный резервуар;

3 — колодец для внесения препарата; 4 гель; 5 — фитиль;

6-охлаждающий столик

Вытеснительный электрофорез.

Этот метод характеризуется тем, что через некоторое время после разделения зон устанавливается состояние равновесия, при котором ширина зон в дальнейшем не изменяется. К электрофорезу такого типа относятся изоэлектрическое фокусирование.

Изоэлектрическое фокусирование. Это метод разделения белков, основанный на перемещении их молекул под действием постоянного электрического тока в область с величиной рН, соответствующей изоэлектрической точке данного белка. Между анодом и катодом создается градиент рН с помощью амфолитов. Каждый белок мигрирует к соответствующему электроду и прекращает движение, попадая в зону с pH = pJ (фокусируется). Таким образом, молекулы, имеющие одинаковую изоэлектриче­скую точку, сконцентрируются в узкой зоне.

Ссылка на основную публикацию
Эластичный бинт на голеностоп как наложить и бинтовать
Бинт медицинский эластичный на голеностопный сустав ленточный Тонус Эласт арт. ELAST 0005 Таблица размеров для бинта эластичного на голеностопный сустав...
Шпоры на пятках-народные средства
Пяточная шпора Пяточная "шпора" представляет собой костный вырост в месте прикрепления сухожилия, который характеризуется болезненными ощущениями в области подошвы. В...
Шрам после кесарева сечения как убрать, какой остается, опасен ли для женщин
Что нужно знать о швах после кесарева сечения Кесарево сечение – это разновидность оперативного вмешательства, при котором осуществляется разрез кожи,...
Эластичный бинт разновидности, применение в медицине и спорте
Эластичные бинты для приседаний Эластичные бинты уже давно применяются в целях профилактики спортивного травматизма. Это средство профилактики в комплексе со...
Adblock detector